Al Credit Scoring System Specification

Overview

This document describes the specifications of the Al Credit Scoring System.

It covers Al training (train_model.py), web interface (webapp.py),

input data (input.csv), model behavior, evaluation metrics, and interpretation methods.

1. File Structure

File Description

train_model.py Trains the LightGBM model and exports evaluation files
webapp.py Flask app for score visualization with risk highlighting
input.csv Pre-processed data used for scoring
model.pkl Serialized trained model
cat_maps.pkl Encoded category mappings for categorical features
individual_scores.csv |Inference results including Name and score
2. Input Data (input.csv)
2.1 Columns

Column Required Type Description
Name Yes int Unique 1-based ID for each individual
Sex Yes str "Man" or "Woman"
Marital Yes str "Single" or "Married"
Age Yes int Age (19-79 valid)
Income Yes float Annual income > 0
CreditAppAmount Yes float Amount applied for credit > 0
OtherDebts Yes float Existing other debts >= 0
DebtRestruct Yes int 0 or 1; indicates history of restructuring
EmploymentYears Yes float Years employed (>= 0, <= Age-15)
Occupation Optional str Category of occupation
Industry Optional str Industry name
Education Optional str Education level
Dependents Optional int Number of dependents
OwnHouse Optional int 0 or 1; ownership of house
Foreigner Optional int 0 or 1; foreign national flag
Phone Optional int 0 or 1; phone possession
Guarantor Optional int 0 or 1; has guarantor
Collateral Optional int 0 or 1; has collateral
BorrowingRatio Calculated [float OtherDebts / Income if Income > 0, else 0

3. Preprocessing

Strip whitespace and control characters from column headers
Replace empty strings with NaN

Validate required columns

Drop rows with missing required fields

Validate category values:

Sex: must be "Man" or "Woman"

Marital: must be "Single" or "Married"

Validate numeric ranges (e.g., Age > 18 and < 80)

Encode categorical columns using cat_maps.pkl

4. Model Training (train_model.py)

4.1 Model Type

LightGBM (LGBMClassifier)

Binary classification (Delinquency = 1 or 0)

4.2 Model Training (train_model.py)

. Loads and cleans credit_data_learn.csv

Validates required fields and value ranges

Calculates BorrowingRatio (OtherDebts / Income)
Encodes categorical variables (e.g., Sex, Marital)
Saves category mappings to cat_maps.pkl

Splits data into training and test sets

Trains LightGBM model with custom hyperparameters
Computes SHAP values for test data

© o N o wN e

. Under overall model evaluation, Accuracy and AUC are displayed to represent prediction
correctness and class separability.

10. The classification report is displayed, including precision, recall, and f1-score for each class.
11. Outputs individual_scores.csv with Name, prediction, and actual

12. Saves input.csv (used in WebApp) and model.pk!




4.3 Hyperparameters

Parameter Value Description

. Number of boosting iterations (trees). Higher values may improve
n_estimators

700|accuracy but increase training time.

learning_rate Step size shrinkage used in update to prevent overfitting. Smaller

0.0055|values lead to slower, more stable learning.

Maximum depth of each tree. Shallower trees generalize better.
max_depth

. . Minimum number of data samples required in a leaf node. Controls
min_child_samples

8[complexity.

Fraction of data used in each iteration. 1.0 means all data is used.
subsample

Fraction of features used per tree. Adds randomness and helps reduce
colsample_bytree

0.7|overfitting.

reg_alpha L1 regularization term. Encourages sparsity (zeroing out unimportant

=

features).

reg_lambda L2 regularization term. Helps prevent overfitting by penalizing large

1l weights.

. Fraction of features to use in each iteration. Helps reduce overfitting.
feature_fraction

0.8

Assigns weights to each class. {0: 1.0, 1: 6.0} means delinquent class

class_weight
{0: 1.0, 1: 6}]is 6 x more important.

4.4 Output

Object Description
model.pkl Trained model
cat_maps.pkl category encoding mappings

individual_scores.csv |inference result

input.csv processed input file

5. Web-based Scoring (webapp.py)

1. Reads input.csv and model.pkl

2. Predicts delinquency probability (0.0000-1.0000)

3. Renders HTML table with .risk-high class if score >= 0.7
4. Reverse maps category codes to labels

5. Displays Name, demographic features, and Score

6. Evaluation Metrics

Metric Description
Accuracy Correct predictions / Total predictions
AUC Area under ROC curve; closer to 1 = better
Precision TP / (TP + FP); higher = fewer false positives
Recall TP / (TP + FN); higher = fewer false negatives
Classification Report [Includes precision, recall, f1-score per class

7. SHAP Interpretation

SHAP (SHapley Additive exPlanations) values are extracted per individual
For each test individual, top 3 influencing features are shown

Each feature is labeled:

Positive (increased probability)

Negative (decreased probability)

Helpful for transparency and compliance

8. Notes

Name is treated as 1-based integer (e.g., 1 to 1000)

Scores are based on test split (not full data)

SHAP values apply only to test set individuals

All outputs are UTF-8 with BOM for compatibility (e.g., Excel)




9. Licensing
Current license: TBD (suggested: MIT or Apache 2.0)
Model may be exported with restrictions depending on usage scope

10. How to Use the System
1. Training the Al Model
1.1. Edit credit_data_learn.csv
The following columns are mandatory and must be retained:
Name, Sex, Age, Marital, Income, CreditAppAmount, OtherDebts, DelinquencyInfo, DebtRestruct, Employment)
Other columns can be modified or updated as needed.
2. Run the training script
$ python train_model.py
This will create the trained model (model.pkl) and category mapping file (cat_maps.pkl) in the models direct
It will also generate a formatted input.csv in the data directory for later use.

2. Using a Trained Model for Credit Evaluation

2.1. Edit input.csv

Update it with the credit evaluation data you want to score.
Ensure the format matches the one generated during training.
2.2. Run the web application

$ python webapp.py

3. Access the application in your browser
URL: http://localhost:8080/
The evaluation results will be displayed in a table.

Notes

Make sure all required Python packages are installed as described in Environment Setup.pdf.
If using a different port for Flask, update the port parameter in webapp.py.

The process flow is illustrated in the provided flow diagram.

Latest Updates & Resources
The latest updates, revision history, and general-purpose tools are available at the following URL:
https://github.com/NextGenAl-corder/FastSpring




